Gene regulatory network state estimation from arbitrary correlated measurements
نویسنده
چکیده
Background: Advancements in gene expression technology allow acquiring cheap and abundant data for analyzing cell behavior. However, these technologies produce noisy, and often correlated, measurements on the transcriptional states of genes. The Boolean network model has been shown to be effective in capturing the complex dynamics of gene regulatory networks (GRNs). It is important in many applications, such as anomaly detection and optimal intervention, to be able to track the evolution of the Boolean states of a gene regulatory network using noisy time-series transcriptional measurements, which may be correlated in time. Results: We propose efficient estimators for the Boolean states of GRNs using correlated time-series transcriptional measurements, where the nature of the correlation and of the measurements themselves are entirely arbitrary. More specifically, we propose new algorithms based on a hypothesis tree to compute optimal minimummean square error (MMSE) filtering and smoothing state estimators for a Partially-Observed Boolean Dynamical System (POBDS) with correlated measurements. The algorithms are exact but may be computationally expensive for large state spaces or long time horizons, in which case a process for pruning the hypothesis tree is employed to obtain an approximation of the optimal MMSE estimators, while keeping computation tractable. Performance is assessed through a comprehensive set of numerical experiments based on the p53-MDM2 negative-feedback loop Boolean regulatory network, where the standard Boolean Kalman Filter (BKF) and Boolean Kalman Smoother (BKS) for uncorrelated measurements are compared to the corresponding new estimators for correlated measurements, called BKF-CORR and BKS-CORR, respectively.
منابع مشابه
Multi-Area State Estimation Based on PMU Measurements in Distribution Networks
State estimation in the energy management center of active distribution networks has attracted many attentions. Considering an increase in complexity and real-time management of active distribution networks and knowing the network information at each time instant are necessary. This article presents a two-step multi-area state estimation method in balanced active distribution networks. The prop...
متن کاملError Modeling in Distribution Network State Estimation Using RBF-Based Artificial Neural Network
State estimation is essential to access observable network models for online monitoring and analyzing of power systems. Due to the integration of distributed energy resources and new technologies, state estimation in distribution systems would be necessary. However, accurate input data are essential for an accurate estimation along with knowledge on the possible correlation between the real and...
متن کاملResilient Configuration of Distribution System versus False Data Injection Attacks Against State Estimation
State estimation is used in power systems to estimate grid variables based on meter measurements. Unfortunately, power grids are vulnerable to cyber-attacks. Reducing cyber-attacks against state estimation is necessary to ensure power system safe and reliable operation. False data injection (FDI) is a type of cyber-attack that tampers with measurements. This paper proposes network reconfigurati...
متن کاملH∞ Sampled-Data Controller Design for Stochastic Genetic Regulatory Networks
Artificially regulating gene expression is an important step in developing new treatment for system-level disease such as cancer. In this paper, we propose a method to regulate gene expression based on sampled-data measurements of gene products concentrations. Inherent noisy behaviour of Gene regulatory networks are modeled with stochastic nonlinear differential equation. To synthesize feed...
متن کاملModeling gene regulatory networks: Classical models, optimal perturbation for identification of network
Deep understanding of molecular biology has allowed emergence of new technologies like DNA decryption. On the other hand, advancements of molecular biology have made manipulation of genetic systems simpler than ever; this promises extraordinary progress in biological, medical and biotechnological applications. This is not an unrealistic goal since genes which are regulated by gene regulatory ...
متن کامل